Persistent homology for low-complexity models
نویسنده
چکیده
We show that recent results on randomized dimension reduction schemes that exploit structural properties of data can be applied in the context of persistent homology. In the spirit of compressed sensing, the dimension reduction is determined by the Gaussian width of a structure associated to the data set, rather than its size, and such a reduction can be computed efficiently. We further relate the Gaussian width to the doubling dimension of a finite metric space, which appears in the study of the complexity of other methods for approximating persistent homology. This allows to literally replace the ambient dimension by an intrinsic notion of dimension related to the structure of the data.
منابع مشابه
Subsampling Methods for Persistent Homology
Persistent homology is a multiscale method for analyzing the shape of sets and functions from point cloud data arising from an unknown distribution supported on those sets. When the size of the sample is large, direct computation of the persistent homology is prohibitive due to the combinatorial nature of the existing algorithms. We propose to compute the persistent homology of several subsampl...
متن کاملIncremental-Decremental Algorithm for Computing AT-Models and Persistent Homology
In this paper, we establish a correspondence between the incremental algorithm for computing AT-models [8,9] and the one for computing persistent homology [6,14,15]. We also present a decremental algorithm for computing AT-models that allows to extend the persistence computation to a wider setting. Finally, we show how to combine incremental and decremental techniques for persistent homology co...
متن کاملZigzag Persistence via Reflections and Transpositions
We introduce a new algorithm for computing zigzag persistence, designed in the same spirit as the standard persistence algorithm. Our algorithm reduces a single matrix, maintains an explicit set of chains encoding the persistent homology of the current zigzag, and updates it under simplex insertions and removals. The total worst-case running time matches the usual cubic bound. A noticeable diff...
متن کاملInterleaved computation for persistent homology
We describe an approach to bounded-memory computation of persistent homology and betti barcodes, in which a computational state is maintained with updates introducing new edges to the underlying neighbourhood graph and percolating the resulting changes into the simplex stream feeding the persistence algorithm. We further discuss the memory consumption and resulting speed and complexity behaviou...
متن کاملPersistent Homology Analysis of Biomolecular Data
Technological advances in the past few decades have fueled the exponential growth of “omic” data in biology. Understanding the rules of life from existing omic data sets, which offer unprecedented opportunities for mathematicians, remains an important mission of the field. Biomolecular structurefunction relationship is a major rule of life, and recognizing this relationship is the holy grail of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1709.01037 شماره
صفحات -
تاریخ انتشار 2017